Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates

نویسندگان

  • Edward J. Fuselier
  • Grady B. Wright
چکیده

In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on Rd, such as radial basis functions, to a smooth, compact embedded submanifold M ⊂ Rd with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of nonsmooth kernels, we provide error estimates for target functions too rough to be within the native space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R3 and a two-dimensional torus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for scattered data interpolation on spheres

We study Sobolev type estimates for the approximation order resulting from using strictly positive definite kernels to do interpolation on the n-sphere. The interpolation knots are scattered. Our approach partly follows the general theory of Golomb and Weinberger and related estimates. These error estimates are then based on series expansions of smooth functions in terms of spherical harmonics....

متن کامل

Localized Bases for Kernel Spaces on the Unit Sphere

Approximation/interpolation from spaces of positive definite or conditionally positive definite kernels is an increasingly popular tool for the analysis and synthesis of scattered data and is central to many meshless methods. For a set of N scattered sites, the standard basis for such a space utilizes N globally supported kernels; computing with it is prohibitively expensive for large N . Easil...

متن کامل

A trade-off principle in connection with the approximation by positive definite kernels

A frequently used method to handle scattered data approximation problems on different structures is the interpolation by linear combinations of a single positive definite kernel. Here the underlying positive definite kernel is responsible for the quality of the common estimates of the two main issues in this approximation process. Firstly the approximation error and secondly the stability of th...

متن کامل

Draft of August 17, 2001 Optimal Stability Results for Interpolation by Kernel Functions

This paper proves lower bounds for the eigenvalues of positive definite matrices arising from interpolation of scattered data by positive definite kernels. By comparison with upper bounds for the interpolation error, it turns out that both bounds are asymptotically optimal for sufficiently dense data sets. Applications include interpolation on the sphere, the torus, and general Riemannian manif...

متن کامل

Armin Iske * Scattered Data Approximation by Positive Definite Kernel Functions

Kernel functions are suitable tools for scattered data interpolation and approximation. We first review basic features of kernel-based multivariate interpolation, before we turn to the construction and the characterization of positive definite kernels and their associated reproducing kernel Hilbert spaces. The optimality of the resulting kernel-based interpolation scheme is shown. Moreover, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012